3.1.78 \(\int \frac {x^2 \sqrt {a+b x+c x^2}}{d-f x^2} \, dx\) [78]

Optimal. Leaf size=316 \[ -\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}-\frac {\left (8 c^2 d-b^2 f+4 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} f^2}+\frac {\sqrt {d} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2}+\frac {\sqrt {d} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2} \]

[Out]

-1/8*(4*a*c*f-b^2*f+8*c^2*d)*arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/c^(3/2)/f^2-1/4*(2*c*x+b)*(c*x
^2+b*x+a)^(1/2)/c/f+1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d
+a*f-b*d^(1/2)*f^(1/2))^(1/2))*d^(1/2)*(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2)/f^2+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^
(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2))*d^(1/2)*(c*d+a*f+b*d^(
1/2)*f^(1/2))^(1/2)/f^2

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 316, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {1085, 1092, 635, 212, 1047, 738} \begin {gather*} -\frac {\left (4 a c f+b^2 (-f)+8 c^2 d\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} f^2}+\frac {\sqrt {d} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 f^2}+\frac {\sqrt {d} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 f^2}-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(x^2*Sqrt[a + b*x + c*x^2])/(d - f*x^2),x]

[Out]

-1/4*((b + 2*c*x)*Sqrt[a + b*x + c*x^2])/(c*f) - ((8*c^2*d - b^2*f + 4*a*c*f)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*S
qrt[a + b*x + c*x^2])])/(8*c^(3/2)*f^2) + (Sqrt[d]*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] - 2*
a*Sqrt[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f^
2) + (Sqrt[d]*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])
*x)/(2*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f^2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 1085

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((A_.) + (C_.)*(x_)^2)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Si
mp[(C*(b*f*p) + 2*c*C*f*(p + q + 1)*x)*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*c*f^2*(p + q + 1)*(2*p + 2*
q + 3))), x] - Dist[1/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)), Int[(a + b*x + c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[
p*(b*d)*(C*((-b)*f)*(q + 1)) + (p + q + 1)*(b^2*C*d*f*p + a*c*(C*(2*d*f) + f*(-2*A*f)*(2*p + 2*q + 3))) + (2*p
*(c*d - a*f)*(C*((-b)*f)*(q + 1)) + (p + q + 1)*((-b)*c*(C*(-4*d*f)*(2*p + q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2
*q + 3))))*x + (p*((-b)*f)*(C*((-b)*f)*(q + 1)) + (p + q + 1)*(C*f^2*p*(b^2 - 4*a*c) - c^2*(C*(-4*d*f)*(2*p +
q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, A, C, q}, x] && NeQ[b^2
 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2*p + 2*q + 3, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {x^2 \sqrt {a+b x+c x^2}}{d-f x^2} \, dx &=-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}-\frac {\int \frac {-\frac {1}{4} \left (b^2+4 a c\right ) d f-2 b c d f x-\frac {1}{4} f \left (8 c^2 d-b^2 f+4 a c f\right ) x^2}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{2 c f^2}\\ &=-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}+\frac {\int \frac {\frac {1}{4} \left (b^2+4 a c\right ) d f^2+\frac {1}{4} d f \left (8 c^2 d-b^2 f+4 a c f\right )+2 b c d f^2 x}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{2 c f^3}-\frac {\left (8 c^2 d-b^2 f+4 a c f\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{8 c f^2}\\ &=-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}-\frac {\left (\sqrt {d} \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (-\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f^{3/2}}+\frac {\left (\sqrt {d} \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \int \frac {1}{\left (\sqrt {d} \sqrt {f}-f x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f^{3/2}}-\frac {\left (8 c^2 d-b^2 f+4 a c f\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{4 c f^2}\\ &=-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}-\frac {\left (8 c^2 d-b^2 f+4 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} f^2}+\frac {\left (\sqrt {d} \left (c d-b \sqrt {d} \sqrt {f}+a f\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d f-4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {b \sqrt {d} \sqrt {f}-2 a f-\left (-2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^{3/2}}-\frac {\left (\sqrt {d} \left (c d+b \sqrt {d} \sqrt {f}+a f\right )\right ) \text {Subst}\left (\int \frac {1}{4 c d f+4 b \sqrt {d} f^{3/2}+4 a f^2-x^2} \, dx,x,\frac {-b \sqrt {d} \sqrt {f}-2 a f-\left (2 c \sqrt {d} \sqrt {f}+b f\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f^{3/2}}\\ &=-\frac {(b+2 c x) \sqrt {a+b x+c x^2}}{4 c f}-\frac {\left (8 c^2 d-b^2 f+4 a c f\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 c^{3/2} f^2}+\frac {\sqrt {d} \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2}+\frac {\sqrt {d} \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.57, size = 320, normalized size = 1.01 \begin {gather*} \frac {-2 \sqrt {c} f (b+2 c x) \sqrt {a+x (b+c x)}+\left (8 c^2 d-b^2 f+4 a c f\right ) \log \left (c \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )-4 c^{3/2} d \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b c d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 c^{3/2} d \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}-2 a \sqrt {c} f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}+b f \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}^2}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{8 c^{3/2} f^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(x^2*Sqrt[a + b*x + c*x^2])/(d - f*x^2),x]

[Out]

(-2*Sqrt[c]*f*(b + 2*c*x)*Sqrt[a + x*(b + c*x)] + (8*c^2*d - b^2*f + 4*a*c*f)*Log[c*(b + 2*c*x - 2*Sqrt[c]*Sqr
t[a + x*(b + c*x)])] - 4*c^(3/2)*d*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4
 & , (b*c*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*c^(3/2)*d*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x
^2] - #1]*#1 - 2*a*Sqrt[c]*f*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1 + b*f*Log[-(Sqrt[c]*x) + Sqrt[a
 + b*x + c*x^2] - #1]*#1^2)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ])/(8*c^(3/2)*f^2)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(848\) vs. \(2(246)=492\).
time = 0.15, size = 849, normalized size = 2.69 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-1/f*(1/4*(2*c*x+b)/c*(c*x^2+b*x+a)^(1/2)+1/8*(4*a*c-b^2)/c^(3/2)*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2)))
+1/2*d/(d*f)^(1/2)/f*(((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+
f*a+c*d))^(1/2)+1/2/f*(-2*c*(d*f)^(1/2)+b*f)*ln((1/2/f*(-2*c*(d*f)^(1/2)+b*f)+c*(x+(d*f)^(1/2)/f))/c^(1/2)+((x
+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/c^(1/2)-
1/f*(-b*(d*f)^(1/2)+f*a+c*d)/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(
d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f
)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1/2))/(x+(d*f)^(1/2)/f)))-1/2*d/(d*f)^(1/2)/f*((
(x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)+1/2*(2*c*(d*f
)^(1/2)+b*f)/f*ln((1/2*(2*c*(d*f)^(1/2)+b*f)/f+c*(x-(d*f)^(1/2)/f))/c^(1/2)+((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^
(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/c^(1/2)-(b*(d*f)^(1/2)+f*a+c*d)/f/((b*(d*f)^(
1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(
1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d
)/f)^(1/2))/(x-(d*f)^(1/2)/f)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2} \sqrt {a + b x + c x^{2}}}{- d + f x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2*(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(x**2*sqrt(a + b*x + c*x**2)/(-d + f*x**2), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2*(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2\,\sqrt {c\,x^2+b\,x+a}}{d-f\,x^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x^2*(a + b*x + c*x^2)^(1/2))/(d - f*x^2),x)

[Out]

int((x^2*(a + b*x + c*x^2)^(1/2))/(d - f*x^2), x)

________________________________________________________________________________________